您现在的位置是:首页 > 科技前沿
单火线设计系列文章专题(上)
智慧创新站
2024-11-17【科技前沿】162人已围观
简介文章1:场景由来技术问题单火线场景由来控制一盏灯具只需要将开关串联在灯具所在的回路上。在传统的家庭中,我们使用机械式墙壁开关控制灯具的通断,若有多个灯具,则通过并联的方式对每个灯进行单独控制。在实际工程装修中,由于只需要控制单一回路便可实现对灯的控制,为了节省线材,电工师傅一般只会将火线布置到墙壁开...
单火线场景由来
控制一盏灯具只需要将开关串联在灯具所在的回路上。在传统的家庭中,我们使用机械式墙壁开关控制灯具的通断,若有多个灯具,则通过并联的方式对每个灯进行单独控制。
在实际工程装修中,由于只需要控制单一回路便可实现对灯的控制,为了节省线材,电工师傅一般只会将火线布置到墙壁开关上,即从电闸的火线拉线到机械开关,然后机械开关出线给灯(即灯线),该线通过天花板上的灯串联再到总闸的零线处。因此,墙壁机械开关处,我们通常只能够看到火线、灯线。这样的布线方式也可见于大厦的布线施工,节省下来的线材所换算出来的成本压缩非常明显!
智能开关的主要电气部分有:AC-DC恒压输出电路、负载通断控制电路、通讯模组射频电路。
AC-DC恒压输出电路需要零火线供电输入,但面对传统的家庭布线情况,施工上必然会碰到供电输入端只有火线、灯线,这和直接零火线输入不同,该输入端火线直接输入,但零线则需要通过灯具之后才能到达输入端。因此,区别于零火输入,这种特殊的接线方式称之为:单火线。
单火线技术难题
闭态“鬼火”
由于必须保证实时联网,智能开关的AC-DC恒压电源务必实时供电,而串联电路中,各点的电流大小一致。当单火线中的灯处于OFF状态时(称之为:闭态),由于智能开关必须实时供电,因此线路中的电流并不为0(统的机械开关物理断开时电路电流为0)。
这衍生出一个技术矛盾点:流过线路的电流需要能为AC-DC提供转化能量以支撑通讯模块的正常工作,但该电流又可能会导致灯具“微微亮起”(称之为:鬼火)。
对于钨丝灯,这种负载为阻性,由于市面上的钨丝灯功率都在15W以上,而且钨丝灯将电能转化为热能,在单火场景中相当于回路中串联一个电阻,让该电阻发热且转化为热能所需要的电流比较大,因此钨丝灯在单火线中不太容易产生异常点亮的问题。
对于LED灯,这种负载为容性,微小的电流可以在LED电源中的输入输出端电容积攒,能量积攒可以让LED灯具处于微微发光的状态,也可能在某个积攒点让LED发光但在发光的一瞬间又将能量消耗掉,消耗掉之后又开始了新的积攒并周而复始,在这种情况下我们会看到灯具闪烁的现象。
开态宕机
当灯具处于ON状态时(称之为:开态),电路中流过的电流≤LED灯具电流。例如将3W的LED灯串联在电路中,最大的电流≤13mA。因此电路中设计的开态取电电路理想状态是在保证该电流值的情况下建立模块所需要的电压、电流。当然,由于取电效率不可能达到100%,甚至可能只达到20-40%,因此所取出的电流可能不足以支撑模块OTA升级或搜网等工作模式下的电流消耗。当电流输出不足以支撑模块消耗时会直接导致模块供电电压下跌直至无法正常工作,由此会产生智能开关“宕机”的问题。
单火线技术路径
闭态取电部分,可使用分立器件做RCC、阻容降压做恒压输出取电,这种解决方式简单,低功耗性能一般,量产稳定性低。业界中PI、晶丰明源等厂家有各自的集成IC解决方案,可做到空载小于5mW。另外,还有讯迪、金升阳等厂家推出集成模块解决方案,这种模块即所谓的:拿来即用,可极大降低开发人员的设计难度,但由于模块仅保留基本的输入输出接口给设计者,因此也无法根据具体的应用产品做相应的内部电流调整,所达到的取电效率并非最佳。
开态取电部分,有可控硅、继电器两种方案,由于可控硅发热问题,继电器的方案目前在市面上较为主流。这两种方案的取电设计电路差异较大,若再考虑辐射、传导等EMC问题,那么对开发人员的设计功底则更为考究!
文章2:闭态取电电路单火线智能开关基本电路构成
单火线智能开关与灯具串联接在零火线中,单火取电需要在灯具关态和开态两种工况下从灯具回路中摄取一部分电流用来给智能开关的取电单元、电源转换单元、控制单元和无线通信单元工作。
单火线智能开关由结构、电子两大单元组成。单火线智能开关的电子单元的基本电路构成包含:闭态取电电路、开态取电电路、开关电路、电源转换电路、无线通信SOC电路。
闭态取电电路
闭态的定义:灯具处于”关闭”的状态,即关灯。
闭态取电:灯具处于关态,通过该电路与灯具串联形成回路。闭态取电电路通过火线和灯线之间的电压差,从灯具回路中摄取一部分电流用来给无线通信SOC电路提供正常工作所需的电源,其电路简化模型如下图。
闭态取电电路常用电路方案参考
1)采用低功耗开关电源转换芯片
例如PI的LNK系列离线式开关电源(LNK3202D:超低待机功耗电源方案整机电源待机输入电流65μA在230VAC输时电源待机功耗12mW)、晶丰明源的超低待机功耗的恒压驱动芯片(BP2535C:隔离应用待机功耗仅1.5mW)
2)RCC电路
3)阻容降压电路
下面以晶丰明源的超低待机功耗的恒压驱动芯片BP2535C来说明闭态取电电路的工作原理,BP2535C应用参考电路如下:
BP2535C的隔离应用电路基本架构属于反激式(Flyback)转换器,设计要点如下:
输入部分参考典型设计:保险丝、压敏电阻、限流电阻、整流桥等。R1的作用:起到限流、抑制冲击电流的目的,改善开机上电因冲击电流导致灯具”闪亮”一下的问题。
输入电容设计:C1的选取与输入电压范围以及输出带载能力有关。电容越大,带载能力越强,但体积和成本会增加,需要折衷考虑。设计注意点:为了减小漏电流,建议输入电容选择CBB电容。
变压器设计:结合开关电源芯片,选取合适的芯片工作模式,根据变压器价格、尺寸以及系统效率来设计变压器大小,选取合适的感量、磁芯尺寸、峰值电流以及线径等。(详细设计可以参考学习书籍资料《精通开关电源设计》(第2版):第3章离线式变换器及其磁性元件设计)
根据闭态取电电路的工作原理,我们可以得知灯具回路中一直”存在”电流i。当该电流i过大时,会导致某一些灯具出现”微亮”、”闪烁”(俗称”鬼火”),尤其是在小瓦数LED灯具中现象更为明显,故消除单火线应用灯泡关断时的微亮或闪烁问题是单火取电技术的一个难点。
文章3:开态取电电路开态取电电路
开态的定义:灯具处于”打开”的状态,即开灯
开态取电电路:用于在开灯状态下,通过该回路摄取一部分电流给后端系统提供稳定的工作电压
开关电路:用于控制灯具通断的电子开关器件,达到控制通断的目的
开关器件方案:可控硅、单稳态继电器、磁保持继电器、MOS管
当灯具处于”开态”时,市电电压基本落在灯具两端,开态取电电路与开关电路串联在灯具回路中,开关电路处于吸合状态,火线和灯线之间的电压差接近于零,此时闭态取电回路失效,故通过开态取电电路在灯具串联回路中设计了一条取电回路。
开态取电电路可以理解为在灯具处于”开态”的每一个交流电周期T中,需要摄取一部分时间t0用来给智能开关系统供电,剩余的T-t0时间给灯具供电,这种取电方式称为”分时取电”。在t0时刻,Q1处于断开状态,后端系统进行取电,将开态取电电路和开关电路串联在回路中;在T-t0时刻,Q1处于导通状态,能量全部提供给灯具进行正常工作,后端系统通过储能器件维持供电,此时开态取电电路被”开路”,其电路简化模型如下图。
当无线通信SOC系统收到”开灯”信号,无线通信SOC系统输出激励信号给到K1_ON,将磁保持继电器K1设为吸合状态,此时开态取电电路开始工作。
开态取电电路常用电路方案参考
1)可控硅取电方案
2)MOS管取电方案
MOS管取电方案可分为半波整流取电、全波整流取电;其框架下的常用的控制电路方案有如下几种:
a).开态取电专用电源控制IC,例如晶丰明源的BP8009;
c).稳压二极管进行稳压取电,通过时基芯片(例如NE555)产生一个固定频率、占空比的定时PWM,对MOS管进行固定占比斩波取电。
下面以磁保持继电器作为开关电路、MOS管半波整流取电、通过比较器进行斩波控制的取电电路方案为案例,其应用参考电路如下:
取电工作路径:零线-灯泡-K1-D1-C1充电(D3、R1、C3组成稳压电路),输出Vout1-PGND-保险丝F1-火线
若K1在市电负半周零点电压相位开始闭合,市电电压从零线经过灯泡、K1后,通过二极管D1进行半波整流给到电容C1充电,Vout1电压开始上升,由D3、R1、C3组成稳压电路,将输出电压Vout1稳定在预设电压范围,经二极管D2隔离后得到Vout2电压给到后端系统供电;C1、C3为储能器件,当取电电路被”旁路”后,通过该器件给后端系统续能。
灯具开态工作路径:零线-灯泡-K1-Q2导通-保险丝F1-火线
当输出电压Vout1达到预设值后,比较器U1的1脚电压高于基准电压3脚,此时比较器U1输出脚Pin4从低电平翻转为高电平,将MOS管Q2导通,灯具变”亮”开始正常工作。后端系统在该过程中通过储能器件C1、C3进行续能,C1、C3上的能量被消耗,故Vout1电压下降;在比较器输出高电平期间,Q3也会被打开,基准电压3脚从Vref1电压下降为Vref2电压;当U1的1脚电压下降到低于基准电压Vref2,比较器U1输出翻转为低电平,进行下一轮的取电。
文章4:电源转换电路和无线通信SOC电路电源转换电路
在单火线智能开关中,电源转换电路主要功能为两个,其示意框图如下,
1).将闭态取电电路和开态取电电路的电压转换成适合开关电路、无线通信SOC电路工作的电压。通常采用低功耗/轻载高效的DC-DC或者低功耗型LDO,例如TI的TPS62120、润石的RS7550-1(Iq=2uA)等。2).将闭态取电电路和开态取电电路的输出电压进行隔离后,再给后端系统供电,防止通过闭态、开态取电电路的器件进行漏电而导致系统功耗增大而带来”鬼火””宕机”等问题。通常采用二极管作为隔离电路器件。
无线通信SOC电路可根据产品定义选取适合的无线SoC平台,以目前智能家居主流2.4G无线通信方案Zigbee、蓝牙、Wi-Fi为例,下面列举一些无线通信技术解决方案常用设计方法及方案商:
1).选取无线SoC平台来自行设计定义模组或者SoConboard设计
2).选取无线通信模组厂家的现有成熟模组方案
下面以SiliconLabs的Zigbee无线SOC平台EFR32MG21的最小系统硬件设计为例,除主芯片外,外围配置电路主要包含:电源电路、时钟电路、RF电路、复位电路。详细硬件电路需参考Datasheet及HardwareDesignGuide来设计调整,以及根据产品功能需求选取合适的工作电压以及增加相应的外设电路,例如按键、指示灯等。
文章5:单火线智能开关的技术难点-闭态”鬼火”问题单火智能开关解决了智能家居“免布线”“无零线”安装智能开关的问题,但单火取电技术在应用中仍有一些技术问题或瓶颈,下面列举单火取电技术常遇到的技术难点和经验对策。
闭态”鬼火”问题
根据上述闭态取电电路的工作原理,得知灯具回路中一直”存在”电流i,当该电流i过大时,会导致某一些灯具出现”微亮”、”闪烁”(俗称”鬼火”)。当灯具在闭态电流i不超过60uA@220Vac时,可解决市场上≥3Watt灯具(@220Vac工作电压)95%不出现鬼火。我们可从如下两个大方向去优化、消除这一现象:
(一).降低灯具回路中的电流i,即降低整机功耗
根据单火开关闭态工作原理,我们可从几个方法对闭态取电电路的功耗进行优化:
(1).选取合适且低功耗、轻载高效率的闭态取电电路方案。针对闭态取电电路,硬件设计及选型可参考如下建议:
1.1电源方案选型:选取超低功耗电源IC。例如:晶丰明源的超低待机功耗恒压芯片BP8009,待机功耗1.5mW;
1.2输入母线电容选型:建议选取CBB电容,减少漏电流;电解电容存在一定的漏电流,在高温下,漏电流会增大;
1.3输出电压设置:在满足器件工作电压前提下,建议选取较低的输出电压,降低功耗;
1.5输出电容选取:建议选取普通电解电容,减少使用固态电容;同等体积下,固态电容的容量大,但漏电流也大;
(2).选取合适且低功耗、轻载高效率的DC-DC或者低功耗、低压差的LDO作为电源转换电路方案,降低转换电路带来额外的损耗,例如:DC-DC方案:TI的TPS62120、LDO线性稳压方案:润石的RS7550-1(Iq=2uA)等;如下图所示,TPS62120的静态电流为11uA,其轻载效率极高。
(3).选取合适的SOC平台、制定合适单火线开关的无线通信SOC软件工作机制,软件工作机制需在功耗、性能、产品功能体验之间平衡。
3.1检查SOC所有引脚的配置方式。针对选用引脚、未选用引脚分别配置合理的IO模式,保证最小系统功耗最低。
3.2软件工作机制须制定严格的时序要求:
建议采用间歇性睡眠机制来降低功耗;
针对功耗和性能体验来制定入网、搜网、清网及OTA的工作时序;
合理调整外设电路状态显示时间间隔,例如LED指示灯亮灭频率、时间间隔等;
在功耗和无线性能之间平衡,适当降低发射功率来降低功耗。
(4).降低无线通信SOC平台所连接的外设电路的功耗。
例如:LED指示灯在保证亮度、最小工作电流要求的前提下,选取功耗最优的限流电阻;
(5).检查闭态取电和开态取电电路的电源输出端是否完全隔离。
若没有隔离,则会通过开态取电电路进行漏电而导致功耗增加。
(二).给灯具提供分流的支路,降低流入灯具的电流
分流支路的示意框图如下图所示,工程应用中常用如下几种方式给灯具提供分流支路:
1).将同一个场景下的多个灯具并联到单火智能开关的一路输出端共同控制使用,即多个并联灯具分流;
2).更换灯具型号、功率去匹配单火智能开关;
3).在灯具两端并联分流器件或者产品,例如X电容、分流器产品等。
更多精彩内容,尽在电子星球APP()
七篇储能技术文章,让你进阶新高度
六篇技术文章,让你秒懂电容的脾气秉性
储能,新能源的后浪已至
五篇文章帮你开启DSP的学习思路
汇总篇:关于PID知识,重点在此
很赞哦!(50)