您现在的位置是:首页 > 智能机电

科技部“可再生能源与氢能技术”2020年度项目申报指南征求意见

智慧创新站 2025-11-23【智能机电】197人已围观

简介近日,国家科技部发布对“可再生能源与氢能技术”等5个重点专项2020年度项目申报指南建议征求意见的通知。涉及氢能部分为:1.氢能1.1离子膜批量制备及应用技术研究内容:针对车用燃料电池的要求,重点突破高温低湿条件下应用的质子交换膜的产业化技术;结合酸性膜和碱性膜的发展,创新双性膜等应用技术。具体包括...

近日,国家科技部发布对“可再生能源与氢能技术”等5个重点专项2020年度项目申报指南建议征求意见的通知。涉及氢能部分为:

1.氢能

1.1离子膜批量制备及应用技术

研究内容:针对车用燃料电池的要求,重点突破高温低湿条件下应用的质子交换膜的产业化技术;结合酸性膜和碱性膜的发展,创新双性膜等应用技术。具体包括:开发全氟共聚功能单体合成及成套工程装备技术;高交换容量、低等效重量全氟质子聚合物制备技术;全氟质子交换树脂高纯单分散溶液制备技术;气体渗透和自由基作用机理研究;高机械强度、高化学稳定性全氟质子交换膜连续制备技术与装备。研发高性能碱性聚电解质膜连续制备工艺,酸碱双性膜及电解水制氢,高效电化学合成氨及分解氨反应系统,直接氨燃料电池等应用技术。

考核指标:质子交换树脂离子交换容量(IEC)≥1.3mmol/g,等效重量(EW)≤730g/mol,质子交换树脂分散粒径≤200nm;质子交换膜厚度≤18μm、偏差≤±5%,离子电导率≥0.1S/cm(95℃、60RH%)、0.04S/cm(120℃,30%RH),电子电阻率1000Ωcm2,渗氢电流≤2mA/cm2,允许最高运行温度≥100℃,强度≥45MPa,纵横向溶胀率≤3%,OCV测试氟离子释放率≤0.7μg/cm2/h(OCV测试)、循环OCV次数≥90,产能≥20万m2/年,成本≤500元/m2,金属离子含量≤20ppm。酸碱双性膜水电解单体模块产氢≥10Nm3/h,制氢纯度≥99.99%,电耗≤4.1kWh/Nm3H2;电解制氨法拉第效率>20%,实现kg级系统集成;氨反向电化学分解效率>95%;直接氨燃料电池≥135mW/cm2@500mAcm-2,常压,80℃。

1.2扩散层用碳纸批量制备及应用技术

考核指标:碳纸可控厚度80~190μm、偏差≤±1.5%,孔隙率≥75%,密度0.3~0.45g∙cm-3,垂直向透气率≥2000mL∙mm/(cm2∙h∙mmAq)、电阻率≤65mΩ∙cm、弯曲强度≥10MPa,平行向电阻率≤4mΩ∙cm、接触电阻≤5mΩ∙cm2、弯曲模量≥10GPa,拉伸强度≥25MPa,导热系数(干态):垂直≥1.7W/(m∙K)、平行≥21W/(m∙K),产能40万m2/年;MPL中孔径可控精度±10nm,表面粗糙度≤7μm;DM可控厚度80~250μm、偏差≤±1.5%,可控接触角≥145o。

1.3车用燃料电池催化剂批量制备技术

研究内容:针对车用燃料电池对催化剂耐久性和一致性的技术要求,突破具备高动态工况耐受能力、兼具高性能/抗中毒特征的铂基催化剂及其公斤级批量制备技术。具体包括:研发氧还原活性提高技术,贵金属用量降低技术,高电位循环耐久技术,抗氢气杂质(CO、含硫化合物)污染技术;开发高一致性、低污染杂质含量催化剂工艺配方及批量化制备技术,研发可规模化生产的催化剂纳米合成工艺,孔径分布合理、催化剂易于高分散担载、成本低廉的先进功能载体处理技术,以及催化剂工业化制备技术与装备。

考核指标:催化剂初始氧还原质量比活性≥0.35A/mgPt@0.9VIR-free,催化剂电化学活性面积≥60m2/g,耐久性①0.6~0.95V≥3万次循环质量活性衰减率≤40%、电化学活性面积衰减率≤40%,耐久性②1.0~1.5V≥5000次循环质量活性衰减率≤40%、电化学活性面积衰减率≤40%,氢气杂质耐受性①CO导致的催化剂质量活性衰减≤30%(0.1MHClO41000ppmCO/H2)、②硫化物导致的催化剂活性面积衰减≤30%(0.36ppmH2S24h),产能≥500g/批次、≥100kg/年,粒径及性能偏差≤±8%,Cl-含量小于50ppmwt.,量产成本≤(Pt现货价格∙PGMwt%+100)元/g。

1.4质子交换膜燃料电池极板专用基材开发

研究内容:针对质子交换膜燃料电池用极板的可加工性、耐蚀性技术要求,研发具备特殊微结构、高耐蚀、低电阻专用超薄基材及其批量制备工艺。具体包括:高耐蚀、低电阻、易于精密成型的不锈钢和钛合金基材,与高强度与弹性、高致密与导电性、超薄复合石墨极板,其成份设计、混合熔铸、组织调控与前后处理技术,及其可连续工业级制备技术与装置的研发;基材耐蚀、导电、可成形性综合性能评估;超薄基材极板试制及寿命快速评估方法研究。

考核指标:不锈钢与钛合金薄板基材厚度50~150μm、偏差≤±4μm,抗弯强度≥25MPa,初始:接触电阻≤3mΩ∙cm2@1.4MPa(接触碳纸)、腐蚀电流≤5.00×10-7A/cm2@80℃(0.5M硫酸+5ppmF-溶液),10000小时工况后:接触电阻≤8mΩ·cm2@1.4MPa、腐蚀电流≤10.00×10-7A/cm2@80℃,湿热循环测试后无腐蚀、无变形,产能≥1000吨/年,延伸率:不锈钢≥55%、钛合金≥30%,体相电阻率:不锈钢≤0.075mΩ·cm、钛合金≤0.17mΩ·cm,成本:不锈钢≤25元/kg,钛合金≤150元/kg;超薄复合石墨板厚度≤1.4mm、最薄处厚度0.1-0.3mm,平面度≤10μm,电导率≥150S/cm,透气率≤2×10-8cm3(cm2∙s)-1,工作压力≥1bar(g),弯曲强度≥50MPa,接触电阻≤10mΩ∙cm2,短堆工作5000h、性能降幅≤10%。

1.5车用燃料电池堆及空压机的材料与部件耐久性测试技术及规范

研究内容:针对质子交换膜燃料电池的产业化过程质量控制的需求,开展电堆关键材料及系统部件耐久性、电磁兼容性测试技术及规范研究。具体包括:研究电堆运行过程中的健康诊断方法,进行实际验证;研究电堆关键材料(催化剂、膜、碳纸、极板基材、防腐涂层等)理化参数及核心部件(膜电极、双极板、密封件等)特性参数的测量方法、等效加速老化方法,建立关联数据库、并形成规范;研发燃料电池系统用空压机关键性能、环境适应性、耐久性等加速测试技术,形成寿命预测与验证方法;研发车用燃料电池系统的电子控制单元离线电磁兼容辐射发射、传导发射、电磁场抗扰度、瞬态抗扰度、静电放电等测试技术,形成规范方法。

考核指标:车载电堆健康诊断装置对电堆氢渗检出率90%;在5000小时测试的基础上,建立的性能与耐久性评测方法、流程规范,包括:催化剂、质子膜、扩散介质、膜电极、双极板、密封件及短堆,形成的特性/理化参数及其测量方法集合≥10类,基于工况衰变规律的寿命模型预测偏差≤10%;空压机耐久性测试方法加速系数≥15、偏差≤3%,研制的综合测试设备适应系统功率范围45-150kW;建立电磁兼容离线性能测试方法、流程规范,至少包括电子控制单元(ECU)、节电压巡检(CVM)、空压机控制器;建成的电磁兼容性能测试平台在燃料电池工作情况下、辐射发射测试能力达到18GHz,辐射抗扰度能力实现400MHz至3000MHz达到200V/m。

1.6公路运输用高压、大容量管束集装箱氢气储存技术

研究内容:针对国内现有20MPa管束车储氢量小、运输成本高等问题,开展更高储存压力下的公路运输用大容量管束集装箱氢气储存技术研究。具体包括:高长径比、高压储氢瓶碳纤维缠绕设计与工艺;大容量内胆成型技术;使用工况下高压储氢瓶的失效机理研究与测试技术;满足道路运输法规要求的高压大容量管束集装箱体设计与集成技术;大容量高压储氢瓶试验方法和标准研究。

考核指标:储氢瓶工作压力≥50MPa(20℃),单瓶水容积≥300L,单瓶储氢密度≥5.5wt%,循环寿命≥15000次(水压充放循环试验15%~150%工作压力);管束集装箱储氢量≥1000kg(符合道路运输法规要求),使用环境温度-40~60℃;形成相关高压管束集装箱标准送审稿。

1.7液氢制取、储运与加注关键装备及安全性研究

研究内容:针对千辆级商用车集中运行对氢燃料制备、输配及加注的需求,开展氢气液化工艺、液氢贮/运和液氢存储-气氢加注站的相关研究。具体包括:高效正仲氢转化、液氢温区高真空多层绝热技术研究;液氢贮罐和运输用液氢槽罐的研制;大规模氢气液化工艺流程开发和优化;氢气液化过程量化风险分析、安全防护、预警和应急分析;液氢加氢站工艺流程开发及布局优化;气氢与液氢加氢站风险、安全及经济性量化对比分析。

考核指标:液化能力≥5吨单套装备,仲氢含量(Para-hydrogen,体积分数)≥95%,氢气液化能耗≤13kWh/kg,液氢纯度(摩尔分数)≥99.97%;储存用液氢储罐容积≥300m3,液氢静态日蒸发率≤0.25%/天,维持时间≥30天;运输用液氢槽罐≥40m3,液氢静态日蒸发率≤0.73%/天,维持时间≥12天,真空寿命≥5年;开发具备35MPa和70MPa加注能力液氢储存气态加注站工艺包,站内液氢储量≥500kg,峰值加氢能力≥400kg/天,氢气加注能耗≤2.50kWh/kg-H2;完成两种氢气储存类型加氢站的泄漏监测、安全运行和经济性评价示范项目。

1.8醇类重整制氢及冷热电联供的燃料电池系统集成技术

研究内容:针对高效、环保、长寿命分布式供能系统应用需求,开展燃料电池冷-热-电联供系统的关键技术研发。具体包括:用于分布式供能的醇类重整制氢系统技术;质子交换膜燃料电池的空气在线净化技术;质子交换膜燃料电池冷-热-电联供系统技术;固体氧化物燃料电池发电系统技术;燃料电池冷-热-电联供系统模拟仿真、系统集成优化及能量管控技术。

考核指标:全自动甲醇重整制氢集成系统产氢能力≥30Nm3/h、效率≥85%LHV,氢气中CO≤0.2ppm、总硫≤4ppb,冷态自启动时间≤30min,动态负荷调节能力≥50%;空气在线净化系统SO2、NO2、VOC、甲醛、O3脱除率≥95%,NH3脱除率≥80%(污染物基准浓度1ppm),PM10以下大气气溶胶脱除率≥99%,无故障运行时间≥1500h;冷热电联供的质子交换膜燃料电池系统额定发电功率≥30kW,发电效率≥50%,70℃余热条件下、制冷效率≥40%,系统供电制冷效率≥70%LHV,连续运行≥3000h;基于重整合成气为燃料的固体氧化物燃料电池发电系统额定发电功率≥30kW、发电效率≥55%,连续运行≥1000h。

4.可再生能源耦合

4.1可离网型风/光/氢燃料电池直流互联与稳定控制技术

研究内容:针对风能、太阳能与氢能多元耦合独立微网,着重突破氢能支撑的可离网型风/光/储/氢燃料电池直流互联系统安全、稳定、经济运行的关键技术。具体包括:氢能支撑的可离网型风/光/储/氢燃料电池直流互联系统部件参数优化匹配设计技术;规模高效制氢、储氢及燃料电池汽车供氢技术;高效燃料电池发电技术;微网废热综合利用技术;复合储能技术;直流微网变流技术,包括并网双向直流变换器、储能双向直流变换器、光伏直流变换器、制氢直流变换器、燃料电池直流变换器、风电交直流变换器;波动性发电与无序快充、规模制氢动态负载下,直流微网功能安全、能量管理、电压支撑及电压波动平抑技术。

考核指标:形成离网技术示范平台:满足不少于10辆氢能燃料汽车加氢、50辆纯电动车直流快充需求,发电能力≥1.5MW,可离网连续运行≥168h(7天),供热能力≥100kW,制氢、供氢规模≥100kg/天;氢气纯度≥99.99%;储氢能力≥200kg;氢燃料电池≥150kW;热电综合利用效率≥80%;电池储能≥1MW/500kWh;双向直流变换器-90%~90%电流响应时间≤15ms;单向变换器0~90%电流响应时间≤10ms;直流微网电压纹波≤5%;微网监控与能量管理系统:可支持监测点≥100个,数据采集频率≥1Hz,控制指令响应时间≤100ms。

全国能源信息平台联系电话:,邮箱:hz@,地址:北京市朝阳区金台西路2社

很赞哦!(156)