您现在的位置是:首页 > 智能机电

8个常见的研究者认知偏误陷阱

智慧创新站 2025-05-12【智能机电】263人已围观

简介认知偏误(Cognitivebias)是一种常见的现象,它是指当我们思考问题或做决策时,大脑会有一些固定的思维倾向。这个过程多是无意识的,有时也会带来正面作用,如帮助我们在纷繁复杂的环境中节省思考时间,更高效地做出决定。但是在研究中,认知偏误易导致研究结果不准确,降低研究的价值。我们都希望研究是客观...

认知偏误(Cognitivebias)是一种常见的现象,它是指当我们思考问题或做决策时,大脑会有一些固定的思维倾向。

这个过程多是无意识的,有时也会带来正面作用,如帮助我们在纷繁复杂的环境中节省思考时间,更高效地做出决定。但是在研究中,认知偏误易导致研究结果不准确,降低研究的价值。

我们都希望研究是客观、理性、反映真实情况的,了解常见的认知偏误可以帮助我们在工作中尽量规避它们,得出更准确的结论。

实际上每个人都会有认知偏误,包括研究者和用户。

今天我们就来说说研究者的常见认知偏误,下次有机会再谈谈用户的,敬请期待。

一、确认偏误(Confirmationbias)

当人们本来就持有某种观点时,对这种观点的感知和注意度会被放大,会选择性地回忆或收集关于它的事例。人们对于自己原本就相信的观点会更容易接受,而把反面观点搁置在一旁。

举个例子:有些人认为女司机不擅长开车,更容易造成事故,所以当新闻中的事故与女司机有关时,他们会觉得“果然如此”。而实际上男司机的事故率比女司机更高。

二、虚假一致性偏差(Falseconsensuseffect)

虚假一致性偏差是指人们很容易认为其他人跟自己有相同的想法,从而高估这些观点的普遍适用性。

举个例子:有一种冷叫做“你妈觉得你冷”。妈妈感觉到了冬天的寒冷,担心我们也会冷,于是催促我们穿秋裤,但可能年轻人并没觉得冷。此时妈妈的想法就带有虚假一致性偏差。

当年轻人吐槽父母朋友圈转的鸡汤文、养生文无用时,也是一种虚假一致性偏差。

在用户研究中,我们也很容易陷入虚假一致性偏差。

比如,当你认为产品的某个方面比较好或者你对产品的某个方面不满意,可能会倾向于认为这也是许多其他用户的感受,但也许事实并非如此。

在对海外产品做研究时尤其要注意这一点,研究者与用户的巨大文化背景差异可能会导致研究结果的严重失真。

三、聚类错觉(ClusteringIllusion)

聚类错觉产生的原因是人们倾向于从随机事件中找出某种规律。

举个例子:如果张三连着几次在群里抢红包都抢到最大份,他可能会觉得自己最近“手气特别旺”。这就是一种聚类错觉,人们试图将几次随机的结果联系起来,用某种规律进行解释。

在研究中,聚类错觉容易出现在小样本研究中。

比如,我们在小样本中发现了被访者的某些共性,总结出某些规律,并期望它们在更大的群体中也适用,但这种共性可能只是源于随机,而非事实。

我们应该谨慎对待在小样本研究中的发现,思考它们是否只是随机结果,最好用其它研究方法帮助验证或参考二手资料,避免出现聚类错觉。

四、知识的诅咒(Curseofknowledge)

培根说过,“知识就是力量”。它怎么会带来诅咒呢?知道的更多难道不好吗?

知识的诅咒是指——人一旦知道了某件事,就没办法想象不知道的样子,也很难体会到不知者的感受。

举个例子:在某次考试之后的课堂上,

老师:“同学们,这是一道送分题啊,大家都做对了吧?只要先连一条辅助线,再……”

学生:“这是啥?这又是啥?这些都是啥?”

在用户研究中,知识的诅咒也会给我们带来许多困扰。

比如,我们对自己的产品很熟悉,就很难想象新手用户是如何使用它的,使用感受如何。我们可能会惊讶地发现,即使在我们看起来操作十分简单的功能,新手用户使用起来也很吃力。

再比如在设计问卷或者访谈脚本时,我们可能会不小心加入一些专业术语而不自知,让用户看得一头雾水。

研究者的有些认知偏误还会直接影响到用户的行为和反应。

五、选择性偏差(Selectionbias)

选择性偏差是指过程或样本的非随机性导致结论的不准确。

举个例子:假设张三想统计人们的工资水平,他拿着一份个税纳税名单开始了调查,结果发现,所有人的工资都在5000以上。

这个结果当然是不准确的,因为5000是我国的个税起征点,工资超过5000的人才会出现在纳税名单上,张三的研究样本是有选择性偏差的,不能代表总体。

在用户研究中,选择性偏差不仅会出现在样本选择中,还可能会出现在研究设计中。

比如在可用性测试中,我们设计了一系列的任务,研究结果自然就无法包含未选中的任务。而且这些任务也会让用户产生一种心理,既然它是设定好的任务,就一定是可以被完成的,他们也会耐心地、多次尝试去完成任务,以期达成某种结果。

当然我们也不会设置无法完成的任务。但在实际的使用情境中,用户并不知道哪些操作是有结果的,哪些没有,他们的行为和态度可能与可用性测试中不同。

六、框架效应(Framingeffect)

框架效应是指——对于同一个问题,当描述有所不同时,人们给出的选择也会有差异。

举个例子:假如说“XX疾病的存活率达93%”,人们可能会觉得这种疾病没有很严重;但如果说“XX疾病的致死率达7%”,那么人们可能会觉得很严重。

在用户研究中,我们也要避免框架效应带来的影响,不要设置引导性的问题,题目中不要用明显的正面或负面词汇,尽量用中立的语言描述。避免题目的描述干扰到用户的选择,而导致研究结果不准确。

七、观察者期望效应(Observer-ExpectancyEffect)

观察者期望效应是指——研究者有时可能会期望出现某种结果,他们无意识地操纵了试验过程,或者错误地解释实验结果,导致研究结果严重歪曲。

一般来说,被观察者几乎无法不受观察行为的影响,当研究是针对人时,被试者会更容易感觉到研究者无意中透露的期望,从而做出相符的反应。

在用户研究中,研究者的表情、肢体语言等都可能会反映出自己所期待的结果,如果用户察觉到了这些,就可能做一些迎合研究者期望的反应。

比如,如果研究者无意中透露出某个新功能是他们团队非常重视、投入巨大、报有很大期待的功能,用户可能会更倾向于对这个功能给出正向的评价,肯定该功能的市场前景。但这也许并非他真实的感觉。

如何避免认知偏误

如何避免这些认知偏误呢?这里有一些建议:

1.研究方案:避免单一的研究方法和单一的样本渠道来源

2.研究准备期:问卷试填、试访谈、预测试

找其他人进行试研究,帮我们在正式研究开始前发现问卷中是否含有引导性问题、专业术语、歧义用语等不便于用户理解的地方;访谈或测试中是否出现不适当的下意识行为等。避免因“知识的诅咒”、“框架效应”和“观察者期望效应”导致的研究结果不准确。

3.研究进行时:多人合作研究、二手资料做参考、听取他人意见

如果只能由单人完成研究,可以收集二手资料,阅读前人研究做参考。同时听取来自他人的意见,帮助拓展思路,包括用研同事和产品经理、设计师等非用研同事。

4.研究结束后:复盘研究

研究结束后,反问自己:

研究的过程是否客观?

研究的结论是否可信?

所有的结论都是有数据支撑、符合逻辑的吗?

有哪些结论是带有偏误的吗?

是否漏掉了一些很重要的结论?

是否与其他人的研究结果相似或相悖?

相悖原因是什么?

下次研究将如何做改善?

彩蛋:最后还有一个认知偏误介绍给大家。

八、偏见盲点(biasblindspot)

偏见盲点是指——我们都倾向于认为自己比别人更少受到认知偏误的影响。人们都有偏见盲点,更容易发现别人出现的认知偏误而忽略自己存在的认知偏误。

举个例子:如果你看到这篇文章后觉得“这些都是别人容易遇到的,我可比他们客观多了”,那么你可能就陷入了偏见盲点。

(所以,这里要大张旗鼓地求翻牌了:为了证明自己没有陷入偏见盲点,亲爱的读者们,快来点赞吧、转发吧、收藏吧!便于以后实时提醒自己哦~)

参考文献

1.Cognitivebiascheatsheet()

2.20cognitivebiasesthatscrewupyourdecisions()

3.6commoncognitivebiasesUXersshouldknow()

4.Cognitivebiasesinuserresearch()

5.CombatingBiasinUserTesting()

6.Don’tLetYourBrainDeceiveYou:AvoidingBiasInYourUXFeedback()

7.Overcomingbiasinresearchandproductdesign()

8.OvercomingCognitiveBiasinUserResearch()

9.UserResearchBias:HowItHurtsYourAppAndWhatYouCanDoAboutIt()

作者:Sijia,公众号:京东设计中心JDC(ID:JDCdesign)

题图来自Unsplash,基于CC0协议

很赞哦!(49)