您现在的位置是:首页 > 智能机电
你需要了解的跨阻放大器
智慧创新站
2025-06-07【智能机电】182人已围观
简介图1:含寄生电容的TIA电路三个关键因素决定TIA的带宽:总输入电容(CTOT)。由RF设置理想的跨阻增益。运算放大器的增益带宽积(GBP):增益带宽越高,产生的闭环跨阻带宽就越高。这三个因素相互关联:对特定的运算放大器来说,定位增益将设置最大带宽;反之,定位带宽将设置最大增益。无寄生的单极放大器这...
图1:含寄生电容的TIA电路
三个关键因素决定TIA的带宽:
总输入电容(CTOT)。
由RF设置理想的跨阻增益。
运算放大器的增益带宽积(GBP):增益带宽越高,产生的闭环跨阻带宽就越高。
这三个因素相互关联:对特定的运算放大器来说,定位增益将设置最大带宽;反之,定位带宽将设置最大增益。
无寄生的单极放大器
这一分析的第一步假定在AOL响应和表1所示的规格中有一个单极的运算放大器。
DC、AOL(DC)时运算放大器的开环增益
120dB
运算放大器GBP
1GHz
159.15kW
表1:TIA规格
放大器的闭环稳定性与其相位裕度ΦM有关,相位裕度由定义为AOL×β的环路增益响应来确定,其中β是噪声增益的倒数。图2和图3中分别显示了用来确定运算放大器AOL和噪声增益的TINA-TI™电路。图2配置了一个开环配置的在试设备(DUT),以导出其AOL。图3使用了一个具有理想RF、CF和CTOT的理想运算放大器来得出噪声增益-1/β。图3目前不包括寄生元件CF和CTOT。
图2:用来确定AOL的DUT配置
图3:用来确定噪声增益(1/β)的理想放大器配置
图4所示为环路增益AOL和1/β的模拟幅度和相位。由于1/β为纯阻抗式,其响应在频率中较为平坦。由于该放大器是一个如图3所示的单位增益配置,环路增益是AOL(dB)+β(dB)=AOL(dB)。因此,AOL和环路增益曲线如图4所示彼此交叠。由于这是一个单极系统,因AOL极的存在,fd条件下的总相移为90°。最终ΦM为180°-90°=90°,并且TIA是绝对稳定的。
图4:模拟回路增益,理想状态下的AOL和1/β
输入电容的影响(CTOT)
让我们来分析一下放大器输入电容对回路增益响应的影响。假设总有效输入电容CTOT为10pF。CTOT和RF组合将在fz=1/(2πRFCTOT)=100kHz的频率条件下在1/β曲线上创建一个零点。图5和图6显示了电路和产生的频率响应。AOL和1/β曲线在10MHz条件下相交—fz(100kHz)和GBP(1GHz)的几何平均值。1/β曲线中的零点变成β曲线中的极点。所得的环路增益将具有如图6所示的两极响应。
零点使得1/β的幅度以20dB/decade的速度增大,并在40dB/decade接近率(ROC)条件下与AOL曲线相交,从而形成了潜在的不稳定性。频率为1kHz时,占主导地位的AOL极点在回路增益中出现90°的相移。频率为100kHz时,零频率fz又发生一次90°的相移。最终影响为1MHz。由于回路增益交叉只在10MHz条件下发生,fd和fz的总相移将为180°,从而得出ΦM=0°,并指示TIA电路是不稳定的。
图5:含10pF输入电容的模拟电路
图6:含输入电容影响时的模拟回路增益AOL和(1/β)
为恢复因fz造成的失相,通过增加与RF并联的电容CF,将极点fp1插入1/β响应。fp1处于1/(2πRFCF)。为了得到最大平坦度的闭环巴特沃斯响应(ΦM=64°),使用等式1计算CF:
其中,f-3dB是在等式2中所示的闭环带宽:
表2使用波特曲线理论汇总了回路增益响应中的拐点。
原因
幅度影响
相位影响
AOL主极点,fd=1kHz
从1kHz开始,幅度以-20dB/dec的速率下降
频率为100Hz-10kHz时,相位从180°开始以-45°/dec的速率下降
fz=100kHz时1/β零位
在fd的影响下,从100kHz开始,幅度以-40dB/dec的速率下降
频率为10kHz-1MHz时,相位从90°开始以-45°/dec的速率下降
fp1=7MHz时1/β极点
在前两种影响下,回路增益幅度的斜率从-40ddB/dec降至-20dB/dec
从700kHz开始,相位以45°/dec的速率增大,并开始恢复。其影响将一直持续增大到700MHz。
表2:极点和零点对回路增益幅度和相位的影响
设计TIA时,客户必须了解光电二极管的电容,因为该电容通常由应用确定。考虑到光电二极管的电容,下一步是选择适合应用的正确放大器。
很赞哦!(10)